Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Front Cell Dev Biol ; 11: 1260795, 2023.
Article En | MEDLINE | ID: mdl-37928901

The asymmetric localization of biomolecules is critical for body plan development. One of the most popular model organisms for early embryogenesis studies is Xenopus laevis but there is a lack of information in other animal species. Here, we compared the early development of two amphibian species-the frog X. laevis and the axolotl Ambystoma mexicanum. This study aimed to identify asymmetrically localized RNAs along the animal-vegetal axis during the early development of A. mexicanum. For that purpose, we performed spatial transcriptome-wide analysis at low resolution, which revealed dynamic changes along the animal-vegetal axis classified into the following categories: profile alteration, de novo synthesis and degradation. Surprisingly, our results showed that many of the vegetally localized genes, which are important for germ cell development, are degraded during early development. Furthermore, we assessed the motif presence in UTRs of degraded mRNAs and revealed the enrichment of several motifs in RNAs of germ cell markers. Our results suggest novel reorganization of the transcriptome during embryogenesis of A. mexicanum to converge to the similar developmental pattern as the X. laevis.

2.
Front Cell Dev Biol ; 11: 1255823, 2023.
Article En | MEDLINE | ID: mdl-37791077

Background: Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture. Thus, we investigated how anticoagulants in isolation procedures and cultivation affect BMSC molecular characteristics. Methods: BM donors (age: 48-85 years) were recruited from the hematology clinic. BM aspirates were obtained from the iliac crest and divided into tubes coated with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants. Isolated BMSCs were analyzed by flow cytometry and RNA-seq analysis. Further cellular and molecular characterizations of BMSCs including CFU, proliferation and differentiation assays, cytometry, bioenergetic assays, metabolomics, immunostaining, and RT-qPCR were performed. Results: The paired samples of isolated BMSCs obtained from the same patient showed increased cellular yield in heparin vs. EDTA samples, accompanied by the increased number of CFU colonies. However, no significant changes in molecular characteristics were found between heparin- and EDTA-isolated BMSCs. On the other hand, RNA-seq analysis revealed an increased expression of genes involved in nucleotide metabolism and cellular metabolism in cultivated vs. non-cultivated BMSCs regardless of the anticoagulant, while genes involved in inflammation and chromatin remodeling were decreased in cultivated vs. non-cultivated BMSCs. Conclusion: The type of anticoagulant in BMSC isolation did not have a significant impact on molecular characteristics and cellular composition, while in vitro cultivation caused the major change in the transcriptomics of BMSCs, which is important for future protocols using BMSCs in regenerative medicine and clinics.

3.
Commun Biol ; 6(1): 412, 2023 04 14.
Article En | MEDLINE | ID: mdl-37059808

Zebrafish (Danio rerio) is a commonly-used vertebrate model species for many research areas. However, its low milt volume limits effective cryopreservation of sperm from a single individual and often precludes dividing a single semen sample to conduct multiple downstream procedures such as genomic DNA/RNA extraction and in-vitro fertilization. Here, we apply germ stem cell transplantation to increase zebrafish sperm production in a closely related larger species from the same subfamily, giant danio Devario aequipinnatus. The endogenous germ cell of the host is depleted by dead-end morpholino antisense oligonucleotide. Histology of the sterile gonad and quantitative PCR of gonadal tissue reveals all sterile giant danio develop the male phenotype. Spermatogonial cells of Tg(ddx4:egfp) transgenic zebrafish are transplanted into sterile giant danio larvae, and 22% of recipients (germline chimera) produce donor-derived sperm at sexual maturation. The germline chimera produce approximately three-fold the volume of sperm and 10-fold the spermatozoon concentration of the donor. The donor-derived sperm is functional and gives rise to viable progeny upon fertilization of donor oocytes. We show that the issue of low milt volume can be effectively addressed by employing a larger surrogate parent.


Cyprinidae , Zebrafish , Animals , Male , Zebrafish/genetics , Semen , Spermatozoa , Spermatogonia , Stem Cell Transplantation
4.
Front Cell Dev Biol ; 10: 982732, 2022.
Article En | MEDLINE | ID: mdl-36204678

The oocyte is a unique cell, from which develops a complex organism comprising of germ layers, tissues and organs. In some vertebrate species it is known that the asymmetrical localization of biomolecules within the oocyte is what drives the spatial differentiation of the daughter cells required for embryogenesis. This asymmetry is first established to produce an animal-vegetal (A-V) axis which reflects the future specification of the ectoderm, mesoderm, and endoderm layers. Several pathways for localization of vegetal maternal transcripts have already been described using a few animal models. However, there is limited information about transcripts that are localized to the animal pole, even though there is accumulating evidence indicating its active establishment. Here, we performed comparative TOMO-Seq analysis on two holoblastic cleavage models: Xenopus laevis and Acipenser ruthenus oocytes during oogenesis. We found that there were many transcripts that have a temporal preference for the establishment of localization. In both models, we observed vegetal transcript gradients that were established during either the early or late oogenesis stages and transcripts that started their localization during the early stages but became more pronounced during the later stages. We found that some animal gradients were already established during the early stages, however the majority were formed during the later stages of oogenesis. Some of these temporally localized transcripts were conserved between the models, while others were species specific. Additionally, temporal de novo transcription and also degradation of transcripts within the oocyte were observed, pointing to an active remodeling of the maternal RNA pool.

5.
Dev Biol ; 489: 146-160, 2022 09.
Article En | MEDLINE | ID: mdl-35752299

Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.


Oocytes , RNA , Animals , Biological Evolution , Oocytes/metabolism , RNA/genetics , RNA/metabolism , Xenopus laevis/genetics , Zebrafish
6.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35742841

DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.


Proteome , Transcriptome , Animals , DNA Damage , Fishes/metabolism , Male , Proteome/metabolism , Proteomics , Semen
7.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Article En | MEDLINE | ID: mdl-35258392

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Autophagy , Inflammatory Bowel Diseases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cysteine/metabolism , DNA, Mitochondrial/metabolism , Dextrans/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Formaldehyde/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Isothiocyanates , Lipopolysaccharides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Reactive Oxygen Species/metabolism , Respiration , Sirolimus
8.
Front Cell Dev Biol ; 9: 772625, 2021.
Article En | MEDLINE | ID: mdl-34957105

Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.

9.
Nucleic Acids Res ; 49(5): 2460-2487, 2021 03 18.
Article En | MEDLINE | ID: mdl-33550394

Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.


Alternative Splicing , Body Temperature Regulation/genetics , Introns , Ketoglutarate Dehydrogenase Complex/genetics , Animals , Calcium/metabolism , Evolution, Molecular , Exons , HEK293 Cells , Humans , Interspersed Repetitive Sequences , Ketoglutarate Dehydrogenase Complex/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA Splice Sites , RNA Splicing Factors/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Spliceosomes/metabolism , Vertebrates/genetics
10.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article En | MEDLINE | ID: mdl-33374934

DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity. Sterlet (Acipenser ruthenus) is a relatively small species of sturgeon. The goal of this study was to assess the sensitivity of sterlet embryos to model genotoxicants (camptothecin, etoposide, and benzo[a]pyrene), and to assess DDR responses. We assessed the effects of genotoxicants on embryo survival, hatching rate, DNA fragmentation, gene expression, and phosphorylation of H2AX and ATM kinase. Exposure of sterlet embryos to 1 µM benzo[a]pyrene induced low levels of DNA damage accompanied by ATM phosphorylation and xpc gene expression. Conversely, 20 µM etoposide exposure induced DNA damage without activation of known DDR pathways. Effects of 10 nM camptothecin on embryo development were stage-specific, with early stages, before gastrulation, being most sensitive. Overall, this study provides foundational information for future investigation of sterlet DDR pathways.


DNA Damage , DNA Repair , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Fishes/genetics , Animals , Benzo(a)pyrene/toxicity , Camptothecin/toxicity , Comet Assay , DNA Fragmentation/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Etoposide/toxicity , Female , Fishes/embryology , Male , Mutagenicity Tests/methods , Mutagens/toxicity
11.
Comput Struct Biotechnol J ; 18: 1173-1181, 2020.
Article En | MEDLINE | ID: mdl-32514328

The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that the majority of transcripts show no differential expression between conditions. This assumption may not always be correct, especially when one condition results in overexpression. We present a new method (NormQ) to normalize the RNASeq library size, using the relative proportion observed from RT-qPCR of selected marker genes. The method was compared against the popular median-of-ratios method, using simulated and real-datasets. NormQ produced more matches to differentially expressed genes in the simulated dataset and more distribution profile matches for both simulated and real datasets.

12.
BMC Genomics ; 20(1): 815, 2019 Nov 06.
Article En | MEDLINE | ID: mdl-31694542

BACKGROUND: The study of the mechanisms controlling wound healing is an attractive area within the field of biology, with it having a potentially significant impact on the health sector given the current medical burden associated with healing in the elderly population. Healing is a complex process and includes many steps that are regulated by coding and noncoding RNAs, proteins and other molecules. Nitric oxide (NO) is one of these small molecule regulators and its function has already been associated with inflammation and angiogenesis during adult healing. RESULTS: Our results showed that NO is also an essential component during embryonic scarless healing and acts via a previously unknown mechanism. NO is mainly produced during the early phase of healing and it is crucial for the expression of genes associated with healing. However, we also observed a late phase of healing, which occurs for several hours after wound closure and takes place under the epidermis and includes tissue remodelling that is dependent on NO. We also found that the NO is associated with multiple cellular metabolic pathways, in particularly the glucose metabolism pathway. This is particular noteworthy as the use of NO donors have already been found to be beneficial for the treatment of chronic healing defects (including those associated with diabetes) and it is possible that its mechanism of action follows those observed during embryonic wound healing. CONCLUSIONS: Our study describes a new role of NO during healing, which may potentially translate to improved therapeutic treatments, especially for individual suffering with problematic healing.


Embryo, Nonmammalian/physiology , Nitric Oxide/metabolism , Wound Healing , Animals , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Glucose/metabolism , Leptin/metabolism , Signal Transduction , Xenopus laevis
13.
Nat Commun ; 9(1): 2221, 2018 06 07.
Article En | MEDLINE | ID: mdl-29880867

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CIIlow, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CIIlow leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CIIlow is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.


Electron Transport Complex II/metabolism , Energy Metabolism/physiology , Mitochondria/metabolism , Paraganglioma/pathology , Stress, Physiological , Animals , Biosynthetic Pathways/physiology , Cell Line, Tumor , Electron Transport Complex II/genetics , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation , Paraganglioma/genetics , RNA, Small Interfering/metabolism , S Phase Cell Cycle Checkpoints/physiology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Xenograft Model Antitumor Assays
14.
Sci Rep ; 8(1): 8315, 2018 05 29.
Article En | MEDLINE | ID: mdl-29844480

Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3'UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.


Xenopus laevis/embryology , 3' Untranslated Regions , Animals , Female
15.
J Exp Zool B Mol Dev Evol ; 330(3): 181-187, 2018 05.
Article En | MEDLINE | ID: mdl-29682883

In oocytes, RNA localization has critical implications, as assembly of proteins in particular subcellular domains is crucial to embryo development. The distribution of mRNA molecules can identify and characterize localized transcripts. The goal of this study was to clarify the origin of primordial germ cells in the oocyte body plan and to reveal the generation of cell lineages by localized RNAs. The distribution of 12 selected mRNAs in sterlet Acipenser ruthenus oocytes was investigated by qPCR tomography and compared with known patterns of mRNA localization in Xenopus laevis. We investigated the distribution of two gene clusters in the ooplasm along the animal-vegetal axis of the sturgeon oocyte, both of which showed clearly defined intracellular gradient pattern remarkably similar to their distribution in the frog oocyte. We elucidated the localization of sturgeon egg germplasm markers belonging to the vegetal group of mRNAs. The mRNAs coding otx1, wnt11, and veg1 found to be localized in the sturgeon animal hemisphere are, in contrast, distributed in the vegetal hemisphere in amphibian. Actinopterygii and Sarcopterygii, two major lineages of osteichthyan vertebrates, split about 476 Ma (Blair & Hedges, ), albeit basal lineages share conserved biological features. Acipenseriformes is one the most basal living lineages of Actinopterygii, having evolved about 200 Ma (Bemis, Birstein, & Waldman, ), contemporaneous with modern amphibians (Roelants et al., ).


Fishes , Oocytes/physiology , Protein Transport/physiology , RNA, Messenger/physiology , Xenopus , Animals , Biological Evolution , Species Specificity
16.
Biol Open ; 6(6): 862-871, 2017 Jun 15.
Article En | MEDLINE | ID: mdl-28483981

Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development. Xenopus embryonic epidermis has become a useful model reflecting human epithelial tissue composition. The developing epidermis of Xenopus laevis is formed from specialized ionocytes, multi-ciliated, goblet and small secretory cells. We found that NO is mainly produced in multi-ciliated cells and ionocytes. Production of NO during early developmental stages is required for formation of multi-ciliated cells, ionocytes and small secretory cells by regulation of epidermal-specific gene expression. The data from this research indicate a novel role of NO during development, which supports recent findings of NO production in human mucociliary and epithelium development.

17.
Results Probl Cell Differ ; 61: 229-241, 2017.
Article En | MEDLINE | ID: mdl-28409307

Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells. So far dozens of determinants have been identified. Xenopus laevis is an ideal system to study asymmetric cell division during early development, because of the huge size of its oocytes and early-stage blastomeres. Here, we present the current knowledge about localization and distribution of cell fate determinants along the three body axes: animal-vegetal, dorsal-ventral, and left-right. Uneven distribution of cell fate determinants during early development specifies the formation of the embryonic body plan.


Asymmetric Cell Division/physiology , Body Patterning/physiology , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/physiology , Animals
18.
Sci Rep ; 5: 11157, 2015 Jun 10.
Article En | MEDLINE | ID: mdl-26059897

Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs. Our results suggest that miRNAs in addition to proteins and mRNAs may have asymmetric distribution within the oocyte and may contribute to asymmetric cell division as cell fate determinants.


Cell Division/genetics , MicroRNAs/genetics , Oocytes/metabolism , Animals , Xenopus laevis
19.
Biomol Detect Quantif ; 5: 3-9, 2015 Sep.
Article En | MEDLINE | ID: mdl-27077037

The precision and reliability of quantitative nucleic acid analysis depends on the quality of the sample analyzed and the integrity of the nucleic acids. The integrity of RNA is currently primarily assessed by the analysis of ribosomal RNA, which is the by far dominant species. The extrapolation of these results to mRNAs and microRNAs, which are structurally quite different, is questionable. Here we show that ribosomal and some nucleolar and mitochondrial RNAs, are highly resistant to naturally occurring post-mortem degradation, while mRNAs, although showing substantial internal variability, are generally much more prone to nucleolytic degradation. In contrast, all types of RNA show the same sensitivity to heat. Using qPCR assays targeting different regions of mRNA molecules, we find no support for 5' or 3' preferentiality upon post-mortem degradation.

20.
Cell Rep ; 8(2): 596-609, 2014 Jul 24.
Article En | MEDLINE | ID: mdl-25043181

The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn), which cleaves Bradykinin, and neuronal nitric oxide synthase (nNOS). Consistent with a role for nitric oxide (NO) in face formation, endogenous NO levels declined after LOF in pathway genes, but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for the migration of first arch cranial NC into the face and for promoting mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling.


Kallikrein-Kinin System , Mouth/embryology , Neural Crest/embryology , Signal Transduction , Animals , Bradykinin/metabolism , Carboxypeptidases/metabolism , Neural Crest/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Xenopus , Zebrafish
...